

Eiffel Logging Cluster

Architecture, Design and Implementation

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others

INTRODUCTION 3

ARCHITECTURE 4

ARCHITECTURE GOALS 4

CLUSTER GOALS 4

DESIGN 5

CLUSTER STRUCTURE 5

CLUSTER OVERVIEW 5

MAIN CLUSTER CLASSES 5

LOG_LOGGING_FACILITY 5

LOG_WRITER 6

WRITER DIRECTORY CLASSES 7

LOG_WRITER_STDERR 7

LOG_WRITER_FILE 7

LOG_WRITER_SYSTEM 7

Roll your own 8

IMPLEMENTATION 9

LOG_LOGGING_FACILITY 9

Initialization 9

Output 9

Access 11

LOG_WRITER 16

Initialization 16

Output 16

LOG_WRITER_FILE 17

Initialization 17

Output 17

Access 17

LOG_WRITER_STDERR 18

Initialization 18

Output 18

LOG_WRITER_SYSTEM 19

Inheritance 19

Initialization 19

Disposal 20

Output 20

Access 20

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 3

Introduction
For certain projects, it would be nice to be able to write messages to a log file. The problem with

abstraction of such functionality is that various platforms have their own method of gathering these

messages. Some platforms use log files, some platforms use a so-called syslog daemon, some

platforms use a so-called Event Log.

The Eiffel Logging Cluster aims to resolve these differences by providing one interface to access

them, while making sure the right platform methods are used under the hood.

One of the main goals of the Eiffel Logging Cluster is to enable users to utilize the same code on

multiple platforms, while using various logging mechanisms.

Another main goal is to provide an extendible logging interface that can be extended to log

messages to a database, or whatever means seems fit to the developer of the application universe.

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 4

Architecture

Architecture goals
The target language for the Cluster implementation is Eiffel, with the platform dependent functions

written in ANSI C.

The Cluster must be usable on all platforms on which Eiffel is supported as a programming language.

Cluster goals
1) The same Eiffel code should compile and run on many platforms;

2) The Logging Cluster must offer a wide range of output forms such as syslog, Event Log,

Database, File, stderr. This needs to be extendible by other developers;

3) All classes in the system must be capable of utilizing the log functionalities by inheriting from

or using a single class that provides the required functionality. Also, within the system, the

log functionality should only require configuring once;

4) Writing a message to the log must be as simple as the following code snippet, independent

from the actual type of log file used.
log.write_fatal_error (“A fatal error occurred. Bailing out%N”)

The logging library has been designed with multi threading in mind. As much concurrency as possible

has been allowed by the design, however, in the LOG_WRITERs there might be some cases where

two threads actually write to the logs at the same time. To make sure that the two threads are not

writing through each other’s messages, the actually putstring call is atomic, in that there is only one

putstring per write operation. Normally operating systems should be capable of making sure that the

file is not being written two at the same time by two threads. The same holds for the system logging

log writer that uses syslog (on Unix) and Event Log (on Windows). These system services should be

capable of guarding the actual log files from concurrent writes.

When developing a self-made LOG_WRITER it has to be kept in mind that concurrency can occur,

and so, if necessary, the developer will have to make sure that this is allowed by the underlying

mechanism. If it is not allowed, one can only use MUTEX objects to avoid deadlocks.

The reason why MUTEX objects are preferably not used in the current, default, implementation is

that the logging library should also be capable of working in a process that doesn’t use multiple

threads. Requiring MUTEX objects in such a case, would automatically transform any project into a

multi-threaded project.

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 5

Design

Cluster Structure
The cluster is provided with one top-level directory in which LOG_LOGGING_FACILITY and

LOG_WRITER are placed. Further to this there is a subdirectory “writers” in which all specific log

writers are kept.

Cluster Overview

LOG_LOGGING_FACILITY

YOUR_CLASSES

LOG_WRITER*

SYS_LOG_WRITER FILE_LOG_WRITER STDERR_LOG_WRITER

Figure 1: Classes in the Logging Cluster

Main Cluster Classes

LOG_LOGGING_FACILITY

The LOG_LOGGING_FACILITY class provides access to the log functionality by exposing a number of

write_* features. Besides these features, a number of configuration features are exposed.

Writing messages

The following features for writing messages are provided:

write_emergency (msg: STRING)

write_alert (msg: STRING)

write_critical (msg: STRING)

write_error (msg: STRING)

write_warning (msg: STRING)

write_notice (msg: STRING)

write_information (msg: STRING)

write_debug (msg: STRING)

Configuration of the logging functionality

At least one log writer must be registered with the LOG_LOGGING_FACILITY. This can be done by

using one of several enable_* features, or by calling register_log (a_log: LOG_WRITER).

The following functions are provided:

disable_all_logs

enable_default_file_log

enable_default_stderr_log

enable_default_system_log

register_log_writer (a_log: LOG_WRITER)

resume_all_logs

resume_default_file_log

resume_default_stderr_log

resume_default_system_log

resume_i_th_log (an_index: INTEGER)

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 6

resume_log_writer (a_log_writer: LOG_WRITER)

suspend_all_logs

suspend_default_file_log

suspend_default_stderr_log

suspend_default_system_log

suspend_i_th_log (an_index: INTEGER)

suspend_log_writer (a_log_writer: LOG_WRITER)

By default, no log writers are registered.

The disable_all_logs feature can be used to completely unregister all logs after a certain event

occurred. This can be useful in a situation where a child process is spawned that subsequently

should lose connection to the console. It can disable_all_logs, and then

enable_default_system_log in order to close the standard file descriptors 0, 1 and 2.

The suspend_* and resume_* features can be used to selectively suspend and resume certain or all

log writers that are registered in LOG_LOGGING_FACILITY.

All LOG_WRITERs are kept in a list, and when that list is not empty, the write_* features call the

write feature on each of the LOG_WRITERs in the list. If the list is empty, the write_* features will not

call anything.

Design by Contract

All the write_* features require the following:

 There is at least one log writer registered and

 The msg attribute is not Void and not empty

The write_* features ensure that the number of log writers has not changed.

The features enable_system_log, enable_file_log, and enable_stderr_log ensure that one

more log writer is registered. The disable_all_logs feature ensures that no log writer is

registered. Lastly, the register_log feature requires that the provided log is not Void, and ensures

that one more log writer is registered with the system.

LOG_WRITER

The LOG_WRITER class is an abstract class, which provides the interface used by the

LOG_LOGGING_FACILITY. All the features are exported to {LOG_LOGGING_FACILITY} so that none of

the features can be called accidently by a (user) class in the universe.

The following interface is exposed:

initialize

has_errors: BOOLEAN

is_intialized: BOOLEAN

write (priority: INTEGER; msg: STRING)

suspend

resume

suspended: BOOLEAN

The initialize feature initializes the minimum for the log writer to work. For example, the

LOG_WRITER_FILE will simply open a text file for appending text.

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 7

Design by Contract

The write feature requires that the log writer is initialized, and that the message is not Void and not

empty. The initialize feature requires that the log writer is not yet initialized and ensures that it is

initialized. The other two features do not have a contract in the abstract LOG_WRITER class.

Writer directory classes
The following classes are implemented for the user’s usage:

 LOG_WRITER_FILE

 LOG_WRITER_STDERR

 LOG_WRITER_SYSTEM

LOG_WRITER_STDERR

This class simply writes everything onto io.error by calling io.error.putstring (msg).

LOG_WRITER_FILE

This class creates a default log file called Execution_environment.current_working_directory +

Operating_environment.directory_separator + “system.log”. If this name is not suitable for

an application one can create a new object of type LOG_WRITER_FILE and call set_file_name to

provide a more suitable file name.

LOG_WRITER_SYSTEM

This class uses the system default event or message logging subsystem to provide integrated

message gathering from an application point of view.

On the Windows platform, it uses the Event Log, and on Unix platforms, it uses the syslogd or

rsyslogd.

There are obvious differences between Unix and Windows. These differences are obscured from the

class’ user in a C library. Nevertheless, one can, by inheriting from the LOG_WRITER_SYSTEM set

certain default aspects, like the application name and the facility to use, e.g. LOG_LOCAL3 or System

Event Log, instead of the default facilities.

The default facilities are LOG_LOCAL6 on Unix platforms and the Application Event Log on Windows.

The default syslog options on Unix are simply LOG_NDELAY, and LOG_PID. Again, by inheritance,

these defaults can be changed to suit the needs of the application under development.

Windows Specifics

eif_eventlog_messages.h and eif_eventlog_messages.dll

These two files are generated when finish_freezing -library is executed in the

$ISE_EIFFEL\library\logging\Clib. You need to ship these files with the installation software so that

these files can be copied into a known directory, and so that one can already setup appropriate

Registry entries.

eif_eventlog_messages.reg

This file contains an example of what to include in the Registry for your own application. The

hexadecimal stuff actually reads the full absolute file name of the eif_message.dll file.

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 8

When an application is using the Event Log for system logging, the Event Viewer expects to find the

message definitions in certain places in the Registry. The keywords are Application, Security, and

System. So when an application uses the Application Event Log, a key must be generated under

HKLM\System\CurrentControlSet\Services\eventlog\Application.

The name of that key is the Event Source that the application will use. This is the same value as

{LOG_WRITER_SYSTEM}.application_name, and is set in

{LOG_WRITER_SYSTEM}.set_application_name. You can override the default (“EiffelSysLog”) by

creating a new object of type LOG_WRITER_SYSTEM and calling set_application_name. See the

multiplatform example, for an example of such usage.

Failure to update the Windows Registry, basically generates a post condition violation of

is_initialized in the LOG_WRITER_SYSTEM’s initialize feature, so it is critically important to the

well-functioning of an application to adhere by the above guidelines.

Roll your own

It’s fairly to create specific LOG_WRITERs. One has to define the initialize feature, create a

sensible default and put it in default_create. The dispose feature could be used to close all

external resources, e.g. file handles. The only feature left to implement is the write feature that

actually writes messages to output channel that is being defined in the new LOG_WRITER.

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 9

Implementation

LOG_LOGGING_FACILITY

Initialization

LOG_LOGGING_FACILITY_make

Requirements

Not applicable

Body

Create the list of log writers.

Guarantees

The list of log writers is created.

Output

write_emergency (msg: STRING)

Requirements

The list of log writers must have at least 1 log writer

Body

For each log writer from the list, call the feature write with the following prefix to the `msg’ string:

“EMERG - “.

Guarantees

The list of log writers still has the same number of log writers as when execution began

write_alert (msg: STRING)

Requirements

The list of log writers must have at least 1 log writer

Body

For each log writer from the list, call the feature write with the following prefix to the `msg’ string:

“ALERT - “.

Guarantees

The list of log writers still has the same number of log writers as when execution began

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 10

write_critical (msg: STRING)

Requirements

The list of log writers must have at least 1 log writer

Body

For each log writer from the list, call the feature write with the following prefix to the `msg’ string:

“CRIT - “.

Guarantees

The list of log writers still has the same number of log writers as when execution began

write_error (msg: STRING)

Requirements

The list of log writers must have at least 1 log writer

Body

For each log writer from the list, call the feature write with the following prefix to the `msg’ string:

“ERROR - “.

Guarantees

The list of log writers still has the same number of log writers as when execution began

write_notice (msg: STRING)

Requirements

The list of log writers must have at least 1 log writer

Body

For each log writer from the list, call the feature write with the following prefix to the `msg’ string:

“NOTIC - “.

Guarantees

The list of log writers still has the same number of log writers as when execution began

write_warning (msg: STRING)

Requirements

The list of log writers must have at least 1 log writer

Body

For each log writer from the list, call the feature write with the following prefix to the `msg’ string:

“WARN - “.

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 11

Guarantees

The list of log writers still has the same number of log writers as when execution began

write_information (msg: STRING)

Requirements

The list of log writers must have at least 1 log writer

Body

For each log writer from the list, call the feature write with the following prefix to the `msg’ string:

“INFO - “.

Guarantees

The list of log writers still has the same number of log writers as when execution began

write_debug (msg: STRING)

Requirements

The list of log writers must have at least 1 log writer

Body

For each log writer from the list, call the feature write with the following prefix to the `msg’ string:

“DEBUG - “.

Guarantees

The list of log writers still has the same number of log writers as when execution began

Access

disable_all_logs

Requirements

At least one log writer must have been registered

Body

Empty the log writers list.

Guarantees

No log writer is registered

enable_default_file_log

Requirements

Not applicable

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 12

Body

Create a default, but initialized, file log writer and add it to the list of log writers

Guarantees

There is one more log writer registered compared to when execution began

enable_default_stderr_log

Requirements

Not applicable

Body

Create a default, but initialized, stderr log writer and add it to the list of log writers

Guarantees

There is one more log writer registered compared to when execution began

enable_default_system_log

Requirements

Not applicable

Body

Create a default, but initialized, system log writer and add it to the list of log writers

Guarantees

There is one more log writer registered compared to when execution began

register_log (a_log: LOG_WRITER)

Requirements

The argument `a_log’ may not be Void and `a_log’ may not be initialized

Body

Add the the argument `a_log’ to the list of log writers and initialize it.

Guarantees

There is one more log writer registered compared to when execution began and `a_log’ is now

initialized.

resume_all_logs

Requirements

Some log writers must have been registered.

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 13

Body

Call resume on all items in the log_writers_list.

Guarantees

Some log writers are still registered.

resume_default_file_log

Requirements

Default file logging must be enabled and the default_log_writer_file object must exist and be

initialized.

Body

Call resume on the default_log_writer_file object.

Guarantees

Not applicable.

resume_default_stderr_log

Requirements

Default stderr logging must be enabled and the default_log_writer_stderr object must exist and be

initialized.

Body

Call resume on the default_log_writer_stderr object.

Guarantees

Not applicable.

resume_default_system_log

Requirements

Default system logging must be enabled and the default_log_writer_system object must exist and be

initialized.

Body

Call resume on the default_log_writer_system object.

Guarantees

Not applicable.

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 14

resume_i_th_log_writer (an_index: INTEGER)

Requirements

The argument `an_index’ must be greather than zero are less than or equal to the number of

registered log writers.

Body

Move the cursor of log_writers_list to the position an_index, and call resume on that item.

Guarantees

Not applicable.

resume_log_writer (a_log: LOG_WRITER)

Requirements

The argument `a_log’ must not be Void and it must initialized.

Body

Call resume on `a_log’.

Guarantees

Not applicable.

suspend_all_logs

Requirements

Some log writers must have been registered.

Body

Call suspend on all items in the log_writers_list.

Guarantees

Some log writers are still registered.

suspend_default_file_log

Requirements

Default file logging must be enabled and the default_log_writer_file object must exist and be

initialized.

Body

Call suspend on the default_log_writer_file object.

Guarantees

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 15

Not applicable.

suspend_default_stderr_log

Requirements

Default stderr logging must be enabled and the default_log_writer_stderr object must exist and be

initialized.

Body

Call suspend on the default_log_writer_stderr object.

Guarantees

Not applicable

suspend_default_system_log

Requirements

Default system logging must be enabled and the default_log_writer_system object must exist and be

initialized.

Body

Call suspend on the default_log_writer_system object.

Guarantees

Not applicable.

suspend_i_th_log_writer (an_index: INTEGER)

Requirements

The given index `an_index’ must be greater than zero and less than or equal to the number of

registered log writers.

Body

Move the cursor of log_writers_list to the position an_index, and call suspend on that item.

Guarantees

Not applicable.

suspend_log_writer (a_log: LOG_WRITER)

Requirements

The given log writer `a_log’ must exist and it must be initialized

Body

Call suspend on the given log writer.

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 16

Guarantees

Not applicable.

LOG_WRITER

Initialization

default_create

Requirements

Not applicable

Body

This feature does not do anything

Guarantees

Not applicable

initialize

Requirements

Not applicable

Body

The body of this feature is deferred

Guarantees

That the log writer is initialized

Output

write (msg: STRING)

Requirements

The log writer must be initialized, it must not be suspended, and `msg’ may not be Void or empty

Body

The body of this feature is deferred.

Guarantees

The log writer is still initialized.

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 17

LOG_WRITER_FILE

Initialization

default_create

Requirements

Not applicable

Body

This feature sets the appropriate file name to use by default.

Guarantees

Not applicable

initialize

Requirements

Not applicable

Body

Create the log_file for appending to that file_name. Rescue any raised exceptions, retry the body

after setting a local flag, and indicate that an error occurred through has_errors.

Guarantees

The log writer is initialized. It also guarantees that the log_file can be written to.

Output

write (msg: STRING)

Requirements

The log writer must be initialized, it must not be suspended, and `msg’ may not be Void or empty

Body

The `msg’ is written to the log_file, with a prefix of the current date and time and a hyphen

character.

Guarantees

The log writer is still initialized.

Access

set_file_name (a_file_name: FILE_NAME)

Requirements

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 18

The given a_file_name must not be Void and the object must not be empty. Also, the log writer may

not be initialized yet.

Body

The used file name is set to a twin of the given `a_file_name’.

Guarantees

Not applicable.

LOG_WRITER_STDERR

Initialization

default_create

Requirements

Not applicable

Body

This feature does not do anything

Guarantees

Not applicable

initialize

Requirements

Not applicable

Body

This feature does not do anything, except to set the flag indicating that this log writer is initialized.

Guarantees

The log writer is initialized.

Output

write (msg: STRING)

Requirements

The log writer must be initialized, it must not be suspended, and `msg’ may not be Void or empty

Body

The `msg’ is written to the io.error, with a prefix of the current date and time and a hyphen

character.

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 19

Guarantees

The log writer is still initialized.

LOG_WRITER_SYSTEM

Inheritance

In order to provide for some fundamental constant values, the following classes will be introduced

as parents of LOG_WRITER_SYSTEM:

 LOG_FACILITY_CONST
This class implements the constants for all Unix syslog facilities and the various Windows

Event Log constants that let a developer choose which Event Log the message should go

into.

 LOG_OPTIONS_CONST
This class implements the Unix syslog options, and basically returns a non-descript value on

other platforms.

 LOG_PRIORITY_CONST
This class implements the Unix syslog options that are mapped to Windows Event Log

Categories in the underlying C implementation of the macro’s.

Initialization

default_create

Requirements

Not applicable

Body

This feature sets appropriate options, facility and application name to use by default.

Guarantees

Not applicable

initialize

Requirements

Not applicable

Body

Call eif_logging_open_log with the default or set information to open the system log.

Indicate through is_initialized that this LOG_WRITER_SYSTEM object is ready to write to the

system log, and indicate through has_errors that an error occurred during initialization.

Guarantees

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 20

The log writer is initialized or there were errors.

Disposal

dispose

Requirements

Not applicable

Body

Close the system logger.

Guarantees

Not applicable

Output

write (msg: STRING)

Requirements

The log writer must be initialized, and `msg’ may not be Void or empty

Body

Remove the prefix of `msg’, convert that to the appropriate logging priority or category, and write

the remainder `msg’ is written to the log.

Guarantees

The log writer is still initialized.

Access

set_application_name (an_application_name: STRING)

Requirements

The given `an_application_name’ may not be Void or empty, and the log writer may not be

initialized.

Body

Set the used application name to a twin of the given `an_application_name’.

Guarantees

Not applicable.

set_facility (a_facility: INTEGER)

Requirements

 Eiffel Logging Cluster

 Copyright © 2010 by ITPassion Ltd, Eiffel Software and others 21

The log writer may not be initialized.

Body

Set the used facility to the given `a_facility’.

Guarantees

Not applicable.

set_options (some_options: INTEGER)

Requirements

The log writer may not be initialized.

Body

Set the used options to the given `some_options’.

Guarantees

Not applicable.

