
ECLOP

An Eiffel Command Line Option Parser

Paul Cohen
<paco@enea.se>

October 30, 2003
Covers release 0.1.0 of ECLOP

Contents

1 Preface 2

2 Introduction 3

3 Using ECLOP 5
3.1 Overview and an example . 5
3.2 Specifying the options . 7
3.3 Parsing program arguments . 9
3.4 Parsing conventions . 10
3.5 Recommended options . 11

4 Design objectives 12

5 Comments on the implementation 13

A BON diagram and class interfaces 15
A.1 BON static diagram . 15
A.2 Interface of COMMAND LINE SYNTAX 16
A.3 Interface of COMMAND LINE PARSER 17

1

Chapter 1

Preface

This document describes ECLOP. ECLOP is a small set of Eiffel classes for
parsing command line options. It provides Eiffel programmers with:

• A compact way of specifying valid command line options and a number
of properties of the options, such as whether they are required or not,
whether they take arguments or not and whether they are mutually ex-
clusive or not.

• An easy way to parse given command line arguments as well as an easy
to use interface for checking that all parsed command line arguments are
valid options or option arguments and for accessing the parsed options
and their arguments.

• Ready to use program invocation error messages as well as messages with
information on program usage and program help.

ECLOP 0.1.0 was developed with ISE Eiffel 5.1 and 5.2 and MSVC++ 6.0
on Windows NT and 2000 machines. It is easy to adapt to SmartEiffel and
Visual Eiffel and it is indeed the authors intention to do so. It should work on
Linux as is. It should also work without modifications with later versions of ISE
Eiffel.

The intention is that ECLOP is to support all the features of the POSIX
and GNU getopt function and also the POSIX Utility Conventions. This is not
entirely true of ECLOP 0.1.0. Furthermore ECLOP also has features that are
not at all supported by the getopt function.

This document was written and prepared using GNU Emacs 20.7.1 and
LATEX2e1 The BON static diagram in the appendix was created using Kim
Waldén’s BONsai Visio Solution2. The BON diagram was printed to a PostScript
file, converted in GSview3 4.3 to an Encapsulated PostScript file and then im-
ported with the LATEX package graphicx. The PDF version of this document
was created with dvipdfm.

1MiKTeX distribution. See: http://www.miktex.org/.
2See: http://www.bon-method.com
3See: http://www.cs.wisc.edu/ ghost/gsview/

2

Chapter 2

Introduction

Most operating systems provide a mechanism for both human users and pro-
grams to provide a number of arguments to a program when it is invoked.
These arguments are called program arguments or command line arguments and
are used to control the program’s behavior. Two obvious examples of this is
invoking programs from a Unix shell or a Windows command prompt:

>foo -a -x

In this example, foo is the name of a program and -a and -x are two program
arguments. The set of program arguments, that are recognized by a program
and which affect the behaviour of the program are called command line options,
program options or simply options for short. Options are also commonly called
flags. Program options usually begin with a dash -. Options can also be defined
to take arguments. For example:

> foo -a -x -f bar.dat

The -f option takes the option argument bar.dat. In this case, the name
of a file.

When a program is invoked, some tokens passed as program arguments may
not be recognized options or option arguments. The program can either report
these tokens simply as unrecognized options and then terminate, or it can inter-
pretate those tokens as valid input. When interpreted as valid input they are
called operands. A common convention is that any program argument following
the special token -- (two dashes) is interpreted as an operand. Any program
argument that preceedes that special token are simply reported as being unrec-
ognized options. For example:

> foo -a -x -f bar.dat -- x1.in x2.in y7

Here the three program arguments x1.in, x2.in and y7 are valid operands.
Usually, options control the behaviour of the program and operands are used to
identify input to the program.

3

The general problem of describing and implementing software support for
the handling of command line options can be divided into three parts:

• How does one specify options and what properties does one want to be
able to specify for the options? This is a question of specification.

• How are options and arguments given on the command line supposed to
be parsed? This is both a question of defining parsing rules and actually
implementing them.

• What are the recommendations for option names and associated program
behaviour? For example, the ”-h” option is usually reserved for telling a
program to show help information about its intended use.

Among existing software support for command line options there exists in
the POSIX standard a specification of a function for command option parsing
called getopt and a set of utility conventions that among other things define a
valid argument syntax1. Among the many GNU utilities there exists the getopt
functions (getopt, getopt long and getopt long only)2.

The POSIX specification and the Gnu implementation of the getopt func-
tion supports the definition and parsing of so called short options. A short
option is simply a single alphanumeric character prefixed with a dash -. Short
options can be grouped together as long as none of the short options is defined
to take option arguments. For example:

> foo -axy

Here foo is invoked with the three short options a, x and y.
The GNU getopt function also supports some extensions via the two ad-

ditional functions getopt long and getopt long only. The most important
extension is the support of so called long options. A long option is a sequence
of two or more characters where each character is either alphanumeric or a dash
-. For example:

> foo --use-compact-encoding

In the above example --use-compact-encoding is a single option. Long
and short options may be used together and intermixed on the command line.

ECLOP works along the same general principles as the getopt function.
You provide a specification of the valid options and their properties and you
can then parse the program arguments passed to you by the operating system.
However, there are two areas where ECLOP is more “advanced” than getopt.
First, it enables you to specify more properties for each option than is possible
with getopt. Secondly it provides more functionality in the form of features
for accessing the actual parsed options and their arguments as well as errors
encountered when parsing etc.

1See http://www.opengroup.org/onlinepubs/007904975/functions/getopt.html
2See http://www.gnu.org/manual/glibc-2.2.3/html chapter/libc 25.html

4

Chapter 3

Using ECLOP

3.1 Overview and an example

ECLOP consists of six Eiffel classes of which two are intended for use by
clients of the ECLOP library. The two classes are COMMAND LINE SYNTAX and
COMMAND LINE PARSER. Using ECLOP typically consists of going through the
following steps:

1. Create a number of STRING based option specifications and put them in
an ARRAY [STRING].

2. Create an instance of COMMAND LINE SYNTAX and supply it with the
ARRAY [STRING].

3. Create an instance of COMMAND LINE PARSER and supply it with
your COMMAND LINE SYNTAX object. If the COMMAND LINE SYNTAX
is invalid because it was provided an invalid option specification or incon-
sistent option specifications the COMMAND LINE PARSER will raise a
precondition violation.

4. Tell your COMMAND LINE PARSER object to parse the ARRAY [STRING]
of actual program arguments that your program was invoked with (see the
ISE Eiffel class ARGUMENTS).

5. Query your COMMAND LINE PARSER object to see if all parsed pro-
gram arguments were valid. If not, ask the COMMAND LINE PARSER
object for an error message to present to the user.

6. If all the parsed program arguments were valid you can access them and
any associated option arguments via the feature ‘valid options’ in the class
COMMAND LINE PARSER.

5

To get a feel for how ECLOP is intended to be used let us look at the
following example1.

class APPLICATION

creation

make

feature {NONE} -- Initialization

make is

-- Run the program.

local

cls: COMMAND_LINE_SYNTAX

clp: COMMAND_LINE_PARSER

args: ARGUMENTS

do

create cls.make (option_specifications)

create clp.make (cls)

create args

clp.parse (args.argument_array)

exe_name := clp.executable_without_suffix

if clp.valid_options.has ("-v") then

print_version_info

elseif clp.valid_options.has ("-h") then

print (cls.program_help (exe_name, Void, Void))

elseif not clp.invalid_options_found then

file_names := clp.valid_options @ "-i"

operate_on_files

else

print (clp.error_message)

print (cls.program_usage (exe_name) + "%N")

print ("Use -h/--help for more help." + "%N")

end

end

feature {NONE} -- Implementation

print_version_info is

-- Print version information.

operate_on_files is

-- Main body of program. Operates on ‘file_names’.

option_specifications: ARRAY [STRING] is

-- The recognized options of this program

once

Result := <<"-v,--version#Version information.",

"-h,--help#Help on using this program.",

"-i,--input!=FILE!#Input file(s) to operate on.">>

end

file_names: LIST [STRING]

-- Names of the files to operate on

exe_name: STRING

-- Name of this executable

end -- class APPLICATION

1The full sourcecode and Ace file for this example can be found under the directory
examples/simple example 1

6

3.2 Specifying the options

Specifying options is done by using Eiffel STRINGs and complying with the fol-
lowing syntax rules. An option specification in ECLOP is either an option name
specification or an mutual exclusivity specification. An option name specification
has the form:

‘‘-x,--option-x!=XARG!#Option x. XARG defines the X-ness.’’

The option name specification must contain at least a short option name or
a long option name or possibly both. In the last case they must be separated
by a single , character. The short option name must begin with the - character
and must be followed by exatly one alpha-numeric character. The long option
name must begin with the -- characters and must then be followed by at least
two characters which may be alpha-numeric and/or the - character. If both a
short and long name are specified they are considered to be synonym names for
the same option.

After the short or long option name specification a number of optional qual-
ifiers may be used to specify the properties of the option. The possible qualifier
combinations are:

• ! The option is required.

• != The option is required and takes 0 or more option arguments.

• !=! The option is required and takes 1 or more (required) option argu-
ments.

• = The option is optional and takes 0 or more options.

• =! The option is optional and takes 1 or more (required) options.

Immedeately following the = qualifier a formal name for the option argu-
ment may be given (XARG above). This name is used by the class COM-
MAND LINE SYNTAX to generate usage and help messages for the option.

Finally, after the qualifiers, if any, the # character may be used to indicate the
start of the option description. After the # character any printable characters
are allowed including the newline ’%N’ character. The option description is also
used by the class COMMAND LINE SYNTAX to generate the help messages
for the option.

A mutual exclusivity specification has the following form:

‘‘(-x|-y|-z)’’

The mutual exclusivity specification is simply a listing of mutually exclusive
options. Note the surrounding parenthesis characters and the use of the |
character as an “or” symbol.

When the options have been specified you can create an instance of a COM-
MAND LINE SYNTAX. The COMMAND LINE SYNTAX will parse and val-
idate the array of option specifications and after it is created you can use the
query is valid to check that all the option specifications you have given are
valid.

7

Here is a little more extensive example2 of a valid array of option specifica-
tions:

option_specifications: ARRAY [STRING] is

-- The recognized options of this program

once

Result := <<’’-v,--version#Print version information.’’,

’’-h,--help#Print help on how to use the program.’’,

’’-a#Use algorithm A. Can’t be used with -b.’’,

’’-b#Use algorithm B. Can’t be used with -a.’’,

’’(-a|-b)’’,

’’-i!=INPUTFILE!#Use INPUTFILE as input.’’,

’’-o=OUTPUTFILE!#Use OUTPUTFILE as ouput. Default is stdout.’’>>

end

Once we have a COMMAND LINE SYNTAX object we can use it to get
usage and help messages. The feature:

program_usage (program_name: STRING): STRING

will, if invoked with:

program_usage (’’foo’’)

return the following string:

’’Usage: foo -i=INPUTFILE [-o=OUTPUTFILE -a -b -v -h]’’

The feature:

program_help (program_name, usage, program_description: STRING): STRING

will, if invoked with:
cls.program_help (’’foo’’, Void, ’’Does foo on a file.’’)

return the following string:
’’Usage: foo -i=INPUTFILE [-o=OUTPUTFILE -a -b -v -h]%N

foo -- Does foo on a file.%N

-a Use algorithm A. Can’t be used with -b.%N

-b Use algorithm B. Can’t be used with -a.%N

-h, --help Print help on how to use the program.%N

-i=INPUTFILE Use INPUTFILE as input.%N

-o=OUTPUTFILE Use OUTPUTFILE as ouput. Default is stdout.%N

-v, --version Print version information.’’

Note that the options are sorted in alphabetical order. If we invoke the same
feature, giving a usage STRING but no program description with:

cls.program_help (’’foo’’, ’’foo [OPTIONS]’’, Void)

we get:
’’Usage: foo [OPTIONS]%N

-a Use algorithm A. Can’t be used with -b.%N

-b Use algorithm B. Can’t be used with -a.%N

-h, --help Print help on how to use the program.%N

-i=INPUTFILE Use INPUTFILE as input.%N

-o=OUTPUTFILE Use OUTPUTFILE as ouput. Default is stdout.%N

-v, --version Print version information.’’

2The full sourcecode and Ace file for this example can be found under the directory
examples/simple example 2

8

3.3 Parsing program arguments

Creating a COMMAND LINE PARSER is easy. Use the creation feature:

make (cls: COMMAND_LINE_SYNTAX) is

-- Create a new command line parser using the syntax ‘cls’.

require

syntax_not_void: cls /= void

syntax_is_valid: cls.is_valid

ensure

syntax_is_set: syntax = cls

end

Note the precondition that requires the COMMAND LINE SYNTAX to be
valid. Now we can start parsing program arguments with:

parse (args: ARRAY [STRING])

After calling parse we can check that all the parsed program arguments are
valid with the query feature invalid options found. If that query returns
True we can get an error message to present to the user with the query feature
error message. For example, using the option specifications in the previous
section:

clp.parse (<<’’foo’’, -i>>)

will produce the following error message:

’’foo: option requires an argument: -i’’

However, if invalid options found returns False we can access the valid
options with:

valid_options: HASH_TABLE [LIST [STRING], STRING]

-- Information on the parsed valid options. The possible

-- contents is a mix of:

-- 1) A hash key consisting of a valid option found when

-- parsing and a hash item that is Void.

-- 2) A hash key consisting of a valid option found when

-- parsing and a hash item consisting of a list

-- arguments found when parsing.

-- Empty if no valid options were encountered.

For example:

clp.parse (<<’’foo’’, ’’-i’’, ’’bar.dat’’>>)

enables us to check if the -i option was given and to access the option arguments
for -i with:

args: LIST [STRING]

...

if clp.valid_options.has (’’-i’’) then

args := clp.valid_options. @ ’’-i’’

...

9

3.4 Parsing conventions

The parser implements the following conventions:

• Command line arguments are options if they begin with a dash -.

• Multiple short name options may follow a dash - in a single token if the
options do not take arguments. Thus, -abc is equivalent to -a -b -c.

• Short option names are consist of a single dash - followed by a single
alphanumeric characters.

• A short name option and its argument may or may not appear as separate
tokens. (In other words, the whitespace separating them is optional.)
Thus, -o foo and -ofoo are equivalent.

• The token -- terminates all options; any following arguments are treated
as non-option arguments, even if they begin with a dash -.

• Any option that does not match a specified option is considered an invalid
and unrecognized option, unless that option is a token that comes after
the -- token. In that case it is considered a (valid) operand.

• Options may be supplied in any order, or appear multiple times. The
parser will only report the option as chosen or not. Multiple option argu-
ments are merged into a single list of arguments for the option.

• Long options consist of -- followed by at least two alphanumeric characters
and dashes -. Option names are typically one to three words long, with
dashes - to separate words. Users can abbreviate the option names as
long as the abbreviations are unique.

• To specify an argument for a long option, write --name=value.

• A single dash - not followed by any other character (except a whitespace) is
reported by the parser as has single dash. If the program uses operands
for specifying file input or ouput, convention dictates that a single dash
- means that the program is to read from standard input or write to
standard output.

10

3.5 Recommended options

Thera are a number of standard options that all programs should recognize.
For example it is good to have an option that makes the program print version
information about itself and another option that makes the program print help
on how to use it. Obviously it would be nice if all programs used the same
naming conventions for these basic options. This would make it much easier for
users of the programs to remember the basic options.

Examples of some existing conventions and recommendations are:

• -h and --help. Print help on using the program.

• -v and --version. Print version information. Note that -v is often also
used to mean that the program is to run in “verbose” mode.

• -i. Input file(s).

• -o. Output file.

11

Chapter 4

Design objectives

There already exists two other Eiffel libraries for specifying and parsing com-
mand line options – Optimus1 and gargs2. So why write yet another library for
this?

Well, it’s fun! Seriously, I had different design objectives than those imple-
mented in those libraries. My main objectives were:

• An pure Eiffel solution. I did not originally want to specify the options
and their properties in a separate specification language which then is used
to generate Eiffel code to be used for the actual parsing. Using compiler
compiler tools such as lex and yacc is of course useful for more complex
specification languages but in this case only introduces uneccessary com-
plexity in the implementation and also unneccesary dependencies in an
automated build environment. Eventually, of course, the ECLOP specifi-
cation language may become so complicated it may motivate a refactoring
using fx. Gobo lex and yacc.

• I wanted a very compact way of specifying the options, along the lines of
the POSIX and Gnu getopt function, by simply passing a string or list of
strings to the parser. I did not want the user of ECLOP to have to create
distinct option specification objects for each option and then having to set
attributes on each object etc.

• I wanted support for generating usage and help messages which is espe-
cially useful when you have large numbers of options.

I felt that both Optimus and gargs did not meet these objectives to my
satisfaction. Futhermore they were written for SmartEiffel and VisualEiffel
resepectively and we were using ISE Eiffel in the project where ECLOP was
originally developed.

1See http://userpages.umbc.edu/ greagl1/optimus/optimus.html
2See http://www.object-tools.com/manuals/ve/tools/gargs.html

12

Chapter 5

Comments on the
implementation

Please refer to Appendix A.1 which contains a BON static diagram over the
classes in ECLOP when reading this chapter. Please be aware that since this is
a beta release, the code and the implemented algorithms are far from optimal -
in all senses of the word.

When creating a COMMAND LINE SYNTAX object it must be passed an
ARRAY of STRINGs containing option and mutual exclusivity specifications.
These are then parsed as follows:

1. It first creates a new ARRAY and puts all option specification STRINGs
at the beginning and all mutual exclusivity specification STRINGs at the
end of the ARRAY.

2. It then iterates over the new ARRAY and creates a HASH TABLE of
OPTION SPECIFICATIONs hashed by option name. When all option
specifications have been dealt with MUTUAL EXCLUSIVITY OPTIONs
are created. These are used to update each OPTION SPECIFICATION
with information on which other OPTION SPECIFICATIONs it is mutu-
ally exclusive with.

The parsing of command line arguments in the class COMMAND LINE PARSER
follows a muliple pass scheme as follows:

1. Iterate over the list of actual the command line argument STRINGs and
for each argument create a PARSED COMMAND LINE ARGUMENT
object. Each such object may represent one of the following:

• A single option.

• Multiple options. Eg. -abc where -a, -b and -c are separate options.

• An option and an option argument. Eg. -ifoo.txt where -i is a
short option name and foo.txt is its argument or --input=foo.txt
where --input is a long option name and foo.txt is its argument.

• A single option argument.

• A single dash -.

13

• A double dash --

• An operand.

2. Iterate over the list of PARSED COMMAND LINE ARGUMENTs and
create a list of PARSED OPTIONs.

3. Iterate over the list of PARSED OPTIONs and validate them against the
COMMAND LINE SYNTAX.

14

Appendix A

BON diagram and class
interfaces

A.1 BON static diagram

Below a static BON diagram over how ECLOP is to be used is shown. The
cluster CLIENT APPLICATION containing the class APPLICATION repre-
sents a client program using ECLOP. The important point to note is that the
client application only uses the COMMAND LINE SYNTAX and the COM-
MAND LINE PARSER classes, the other ECLOP classes are used internally
by these two classes.

CLIENT_APPLICATION

APPLICATION

ECLOP

COMMAND_LINE_PARSER COMMAND_LINE_SYNTAX

INTERNAL

PARSED_OPTION OPTION_SPECIFICATION

MUTUAL_EXCLUSIVITY_
SPECIFICATION

PARSED_COMMAND_
LINE_ARGUMENT

syntax:

parsed_arguments:
LINKED_LIST [...]

parsed_options:
LINKED_LIST [...]

clp: cls:

specified_options:
HASH_TABLE [..., STRING]

exclusive_options:
LIST [...]

STRING

option_specifications:
ARRAY [...]

Figure A.1: BON static diagram

15

A.2 Interface of COMMAND LINE SYNTAX

class interface

COMMAND_LINE_SYNTAX

create

make

feature {NONE} -- Initialization

make (spec: ARRAY [STRING]) is

-- Specify a new command line syntax as specified by

-- the specifications in ‘spec’.

require

spec_not_void: spec /= Void

feature -- Status report

invalid_specifications: HASH_TABLE [STRING, STRING]

-- Table of invalid option specificationms. Void if

-- none exists. Hash keys are either a) textual option

-- specifications or b) mutual exclusivity

-- specifications. The hash elements are error

-- descriptions

is_valid: BOOLEAN

-- Is this a valid specification?

feature -- Access (Application output messages)

program_help (program_name, usage, program_description: STRING): STRING

-- Program help string for presenting to user. The

-- ‘program_name’ is mandatory. If no ‘usage’ string is

-- supplied the value of ‘program_usage (program_name)’

-- is used.

require

program_name_not_void: program_name /= void

program_name_not_empty: program_name.count > 0

program_usage (program_name: STRING): STRING

-- Program usage string for presenting to user.

require

program_name_not_void: program_name /= void

program_name_not_empty: program_name.count > 0

end -- class COMMAND_LINE_SYNTAX

16

A.3 Interface of COMMAND LINE PARSER

class interface

COMMAND_LINE_PARSER

create

make

feature {NONE} -- Initialization

make (cls: COMMAND_LINE_SYNTAX) is

-- Create a new command line parser using the syntax

-- ‘cls’.

require

syntax_not_void: cls /= Void

syntax_is_valid: cls.is_valid

ensure

syntax_is_set: syntax = cls

end

feature -- Access

ambigous_options: LINKED_LIST [STRING]

-- List of ambigous options. Empty if no

-- ambigous options were encountered.

ambigous_options_found: BOOLEAN

-- Where any ambigous (long) options found when

-- parsing?

error_message: STRING

-- An error message with information on errors

-- encountered when parsing

require

invalid_options: invalid_options_found

executable: STRING

-- The name of the current executable stripped of all

-- preceding directory names and separators

executable_path: STRING

-- The name of the current executable in the form of a

-- full path including preceding directory names and

-- directoy name separators

executable_without_suffix: STRING

-- The name of the current executable stripped of all

-- preceding directory names and separators and without

-- any eventual suffix like ".exe"

invalid_options_found: BOOLEAN

-- Where any invalid options found while parsing?

ensure

Result implies (required_options_missing or

options_with_missing_arguments_found or

unrecognized_options_found or

mutually_exclusive_options_found or

ambigous_options_found or

invalidly_grouped_options_found)

17

invalidly_grouped_options: LINKED_LIST [STRING]

-- List of invalidly grouped short options. A short

-- option may not be grouped with other short options

-- if it takes option arguments

invalidly_grouped_options_found: BOOLEAN

-- Where any invalidly grouped short options found when

-- parsing?

missing_options: LINKED_LIST [STRING]

-- List of missing options. Empty if no missing options

-- were encountered.

mutually_exclusive_options: HASH_TABLE [STRING, STRING]

-- Table of mutually exclusive options. Empty if no

-- such options were encountered. Hash keys are

-- individual option names and the items are strings

-- containing a comma-separated list of all the parsed

-- options with which the given option is mutually

-- exclusive.

mutually_exclusive_options_found: BOOLEAN

-- Where any mutually exclusive options found when

-- parsing?

operands: LIST [STRING]

-- List of operands, ie. all arguments following the

-- "--" argument, if any

options_with_missing_arguments: LINKED_LIST [STRING]

-- List of options with missing arguments. Empty

-- if no options with missing arguments were encountered.

options_with_missing_arguments_found: BOOLEAN

-- Where any options requiring arguments lack arguments

-- when parsing?

required_options_missing: BOOLEAN

-- Was any required options missing when parsing?

single_dash_encountered: BOOLEAN

-- Was a single dash encountered? This means that if

-- your program uses operands to represent files to be

-- opened for either reading or writing, you should now

-- read or write, as the case is, from standard input or

-- standard output respectively.

unrecognized_options: LINKED_LIST [STRING]

-- List of unrecognized options. Empty if no

-- unrecognized options were encountered.

unrecognized_options_found: BOOLEAN

-- Where any unrecognized options encountered when

-- parsing?

18

valid_options: HASH_TABLE [LIST [STRING], STRING]

-- Information on the parsed valid_options. The possible

-- contents is a mix of:

-- 1) A hash key consisting of a valid option found when

-- parsing and a hash item that is Void.

-- 2) A hash key consisting of a valid option found when

-- parsing and a hash item consisting of a list

-- arguments found when parsing.

-- Empty if no valid_options were encountered.

feature -- Basic operations

parse (args: ARRAY [STRING])

-- Parse the ‘args’.

require

args_not_void: args /= void

args_contains_at_least_executable_name: args.count > 0

feature -- Test & Debug

pretty_print_of_valid_options: STRING

-- Pretty presentation of all information on the

-- most recently parsed (valid) options

invariant

valid_syntax: syntax.is_valid

end -- class COMMAND_LINE_PARSER

19

