
The ABEL Persistence Library Tutorial

Roman Schmocker, Pascal Roos, Marco Piccioni

Last updated:

January 15, 2014

Contents

1 Introducing ABEL 2
1.1 Setting things up . 2
1.2 Getting started . 2

2 Basic operations 5
2.1 Inserting . 5
2.2 Querying . 6
2.3 Updating . 7
2.4 Deleting . 8
2.5 Dealing with Known Objects 8

3 Advanced Queries 11
3.1 The query mechanism . 11
3.2 Criteria . 11

3.2.1 Predefined Criteria . 11
3.2.2 Agent Criteria . 12
3.2.3 Creating criteria objects 12
3.2.4 Combining criteria . 14

4 Dealing with references 16
4.1 Inserting objects with dependencies 16
4.2 Going deeper in the Object Graph 20

5 Tuple queries 21
5.1 Tuple queries and projections 21
5.2 Tuple queries and criteria . 21
5.3 Example . 22

6 Error handling 24

1

Chapter 1

Introducing ABEL

ABEL (A Better EiffelStore Library) is an object-oriented persistence li-
brary written in Eiffel and aiming at seamlessly integrating various kinds
of data stores.

1.1 Setting things up

ABEL is shipped with EiffelStudio in the unstable directory. You can get
the latest code from the SVN directory 1.

1.2 Getting started

We will be using PERSON objects to show the usage of the API. In the source
code below you will see that ABEL handles objects ”as they are”, meaning
that to make them persistent you don’t need to add any dependencies to
their class source code.

class PERSON

3 create
make

6 feature {NONE} -- Initialization

make (first, last: STRING)
9 -- Create a newborn person.

1https://svn.eiffel.com/eiffelstudio/trunk/Src/unstable/
library/persistency/abel

2

https://svn.eiffel.com/eiffelstudio/trunk/Src/unstable/library/persistency/abel
https://svn.eiffel.com/eiffelstudio/trunk/Src/unstable/library/persistency/abel

require
first_exists: not first.is_empty

12 last_exists: not last.is_empty
do
first_name := first

15 last_name := last
age:= 0

ensure
18 first_name_set: first_name = first

last_name_set: last_name = last
default_age: age = 0

21 end

feature -- Basic operations
24

celebrate_birthday
-- Increase age by 1.

27 do
age:= age + 1

ensure
30 age_incremented_by_one: age = old age + 1

end

33 feature -- Access

first_name: STRING
36 -- The person’s first name.

last_name: STRING
39 -- The person’s last name.

age: INTEGER
42 -- The person’s age.

invariant
45 age_non_negative: age >= 0

first_name_exists: not first_name.is_empty
last_name_exists: not last_name.is_empty

48 end

Listing 1.1: The PERSON class

There are three very important classes in ABEL:

• The deferred class PS_REPOSITORY provides an abstraction to the ac-

3

tual storage mechanism. It can only be used for read operations.

• The PS_TRANSACTION class represents a transaction and can be used
to execute read, insert and update operations. Any PS_TRANSACTION

object is bound to a PS_REPOSITORY.

• The PS_QUERY [G] class is used to describe a read operation for ob-
jects of type G.

To start using the library, we first need to create a PS_REPOSITORY. For
this tutorial we are going to use an in-memory repository to avoid set-
ting up any external database. Each ABEL backend will ship a repository
factory class to make initialization easier. The factory for the in-memory
repository is called PS_IN_MEMORY_REPOSITORY_FACTORY.
class START

3 create
make

6 feature {NONE} -- Initialization

make
9 -- Initialization for ‘Current’.

local
factory: PS_IN_MEMORY_REPOSITORY_FACTORY

12 do
create factory.make
repository := factory.new_repository

15

create criterion_factory
explore

18 end

repository: PS_REPOSITORY
21 -- The main repository.

end
24

end

Listing 1.2: The START class

We will use criterion_factory later in this tutorial. The feature explore
will guide us through the rest of this API tutorial and show the possibili-

ties in ABEL.

4

Chapter 2

Basic operations

2.1 Inserting

You can insert a new object using feature insert in PS_TRANSACTION. As
every write operation in ABEL needs to be embedded in a transaction, you
first need to create a PS_TRANSACTION object. Let’s add three new persons
to the database:
insert_persons

-- Populate the repository with some person objects.
3 local

p1, p2, p3: PERSON
transaction: PS_TRANSACTION

6 do
-- Create persons

create p1.make (...)
9 create ...

-- We first need a new transaction.
12 transaction := repository.new_transaction

-- Now we can insert all three persons.
15 if not transaction.has_error then

transaction.insert (p1)
end

18 if not transaction.has_error then
transaction.insert (p2)

end
21 if not transaction.has_error then

transaction.insert (p3)
end

5

24

-- Commit the changes.
if not transaction.has_error then

27 transaction.commit
end

30 -- Check for errors.
if transaction.has_error then
print ("An error occurred!%N")

33 end
end

Listing 2.1: Insertion code.

2.2 Querying

A query for objects is done by creating a PS_QUERY [G] object and execut-
ing it using features of PS_REPOSITORY or PS_TRANSACTION. The generic
parameter G denotes the type of objects that should be queried.

After a successful execution of the query, you can iterate over the result
using the across syntax. The feature print_persons below shows how
to get and print a list of persons from the repository:

print_persons
-- Print all persons in the repository

3 local
query: PS_QUERY[PERSON]

do
6 -- First create a query for PERSON objects.

create query.make

9 -- Execute it against the repository.
repository.execute_query (query)

12 -- Iterate over the result.
across
query as person_cursor

15 loop
print (person_cursor.item)

end
18

-- Check for errors.
if query.has_error then

6

21 print ("An error occurred!%N")
end

24 -- Don’t forget to close the query.
query.close

end

Listing 2.2: Print all PERSON objects.

In a real database the result of a query may be very big, and you are
probably only interested in objects that meet certain criteria, e.g. all per-
sons of age 20. You can read more about it in Chapter 3.

Please note that ABEL does not enforce any kind of order on a query
result.

2.3 Updating

Updating an object is done through feature update in PS_TRANSACTION.
Like the insert operation, an update needs to happen within a transaction.
Note that in order to update an object, we first have to retrieve it.

Let’s update the age attribute of Berno Citrini by celebrating his birth-
day:

update_berno_citrini
-- Increase the age of Berno Citrini by one.

3 local
query: PS_QUERY[PERSON]
transaction: PS_TRANSACTION

6 berno: PERSON
do
print ("Updating Berno Citrini’s age by one.%N")

9

-- Create query and transaction.
create query.make

12 transaction := repository.new_transaction

-- As we’re doing a read followed by a write, we
15 -- need to execute the query within a transaction.

if not transaction.has_error then
transaction.execute_query (query)

18 end

-- Search for Berno Citrini

7

21 across
query as cursor

loop
24 if cursor.item.first_name ∼ "Berno" then

berno := cursor.item

27 -- Change the object.
berno.celebrate_birthday

30 -- Perform the database update.
transaction.update (berno)

end
33 end

-- Cleanup
36 query.close

if not transaction.has_error then
transaction.commit

39 end

if transaction.has_error then
42 print ("An error occurred.%N")

end
end

Listing 2.3: Update Berno Citrini’s age.

To perform an update the object first needs to be retrieved or inserted
within the same transaction. Otherwise ABEL cannot map the Eiffel object
to its database counterpart (see also Section 2.5).

2.4 Deleting

ABEL does not support explicit deletes any longer, as it is considered dan-
gerous for shared objects. Instead of deletion it is planned to introduce a
garbage collection mechanism in the future.

2.5 Dealing with Known Objects

Within a transaction ABEL keeps track of objects that have been inserted
or queried. This is important because in case of an update, the library

8

internally needs to map the object in the current execution of the program
to its specific entry in the database.

Because of that, you can’t update an object that is not yet known to
ABEL. As an example, the following functions will fail:

failing_update
-- Trying to update a new person object.

3 local
bob: PERSON
transaction: PS_TRANSACTION

6 do
create bob.make ("Robert", "Baratheon")
transaction := repository.new_transaction

9 -- Error: Bob was not inserted / retrieved before.
-- The result is a precondition violation.

transaction.update (bob)
12 transaction.commit

end

15 update_after_commit
-- Update after transaction committed.

local
18 joff: PERSON

transaction: PS_TRANSACTION
do

21 create joff.make ("Joffrey", "Baratheon")
transaction := repository.new_transaction
transaction.insert (joff)

24 transaction.commit

joff.celebrate_birthday
27

-- Prepare can be used to restart a transaction.
transaction.prepare

30

-- Error: Joff was not inserted / retrieved before.
-- The result is a precondition violation.

33 transaction.update (joff)

-- Note: After commit and prepare,‘transaction’
36 -- represents a completely new transaction.

end

Listing 2.4: Common pitfalls with update.

9

The feature is_persistent in PS_TRANSACTION can tell you if a spe-
cific object is known to ABEL and hence has a link to its entry in the
database.

10

Chapter 3

Advanced Queries

3.1 The query mechanism

As you already know from Section 2.2, queries to a database are done by
creating a PS_QUERY[G] object and executing it against a PS_TRANSACTION
or PS_REPOSITORY. The actual value of the generic parameter G deter-
mines the type of the objects that will be returned. By default objects of a
subtype of G will also be included in the result set.

ABEL will by default load an object completely, meaning all objects
that can be reached by following references will be loaded as well (see
also Chapter 4).

3.2 Criteria

You can filter your query results by setting criteria in the query object,
using feature set_criterion in PS_QUERY. There are two types of criteria:
predefined and agent criteria.

3.2.1 Predefined Criteria

When using a predefined criterion you pick an attribute name, an operator
and a value. During a read operation, ABEL checks the attribute value of
the freshly retrieved object against the value set in the criterion, and filters
away objects that don’t satisfy the criterion.

Most of the supported operators are pretty self-describing (see class
PS_CRITERION_FACTORY in Section 3.2.3). An exception could be the like
operator, which does pattern-matching on strings. You can provide the

11

like operator with a pattern as a value. The pattern can contain the wild-
card characters * and ?. The asterisk stands for any number (including
zero) of undefined characters, and the question mark means exactly one
undefined character.

You can only use attributes that are strings or numbers, but not every
type of attribute supports every other operator. Valid combinations for
each type are:

• Strings: =, like

• Any numeric value: =, <,<=, >,>=

• Booleans: =

Note that for performance reasons it is usually better to use predefined
criteria, because they can be compiled to SQL and hence the result can be
filtered in the database.

3.2.2 Agent Criteria

An agent criterion will filter the objects according to the result of an agent
applied to them.

The criterion is initialized with an agent of type PREDICATE [ANY,

TUPLE [ANY]]. There should be either an open target or a single open
argument, and the type of the objects in the query result should conform
to the agent’s open operand. For an example see Section 3.2.3.

3.2.3 Creating criteria objects

The criteria instances are best created using the PS_CRITERION_FACTORY

class.
The main features of the class are the following:

class
PS_CRITERION_FACTORY

3 create
default_create

6 feature -- Creating a criterion

new_criterion alias "()" (tuple: TUPLE [ANY]):
PS_CRITERION

9 -- Creates a new criterion according to a ‘tuple’

12

-- containing either a single PREDICATE or three
-- values of type [STRING, STRING, ANY].

12

new_agent (a_predicate: PREDICATE [ANY, TUPLE [ANY]]):
PS_CRITERION

-- Creates an agent criterion.
15

new_predefined (object_attribute: STRING;
operator: STRING; value: ANY): PS_CRITERION

18 -- Creates a predefined criterion.

feature -- Operators
21

equals: STRING = "="

24 greater: STRING = ">"

greater_equal: STRING = ">="
27

less: STRING = "<"

30 less_equal: STRING = "<="

like_string: STRING = "like"
33

end

Listing 3.1: The CRITERION FACTORY class interface

Assuming you have an object f: PS_CRITERION_FACTORY, to create a
new criterion you have two possibilities:

• The ”traditional” way

– f.new_agent (agent an_agent)

– f.new_predefined (an_attr_name, an_operator, a_val)

• The ”syntactic sugar” way

– f (an_attr_name, an_operator, a_value)

– f (agent an_agent)

13

create_criteria_traditional : PS_CRITERION
3 -- Create a new criteria using the traditional approach.

do
-- for predefined criteria

6 Result:=
factory.new_predefined ("age", factory.less, 5)

9 -- for agent criteria
Result :=
factory.new_agent (agent age_more_than (?, 5))

12 end

create_criteria_parenthesis : PS_CRITERION
15 -- Create a new criteria using parenthesis alias.

do
-- for predefined criteria

18 Result:= factory ("age", factory.less, 5)

-- for agent criteria
21 Result := factory (agent age_more_than (?, 5))

end

24 age_more_than (person: PERSON; age: INTEGER): BOOLEAN
-- An example agent
do

27 Result:= person.age > age
end

Listing 3.2: Different ways of creating criteria.

3.2.4 Combining criteria

You can combine multiple criterion objects by using the standard Eiffel
logical operators. For example, if you want to search for a person called
“Albo Bitossi” with age <= 20, you can just create a criterion object for
each of the constraints and combine them:

1

composite_search_criterion : PS_CRITERION
-- Combining criterion objects.

4 local
first_name_criterion: PS_CRITERION
last_name_criterion: PS_CRITERION

14

7 age_criterion: PS_CRITERION
do
first_name_criterion:=

10 factory ("first_name", factory.equals, "Albo")

last_name_criterion :=
13 factory ("last_name", factory.equals, "Bitossi")

age_criterion :=
16 factory (agent age_more_than (?, 20))

Result := first_name_criterion and last_name_criterion
and not age_criterion

19

-- Shorter version:
Result := factory ("first_name", "=", "Albo")

22 and factory ("last_name", "=", "Bitossi")
and not factory (agent age_more_than (?, 20))

end

Listing 3.3: Combining criteria.

ABEL supports the three standard logical operators AND, OR and NOT.
The precedence rules are the same as in Eiffel, which means that NOT is
stronger than AND, which in turn is stronger than OR.

15

Chapter 4

Dealing with references

In ABEL, a basic type is an object of type STRING, BOOLEAN, CHARACTER
or any numeric class like REAL or INTEGER. The PERSON class only has

attributes of a basic type. However, an object can contain references to
other objects. ABEL is able to handle these references by storing and re-
constructing the whole object graph (an object graph is roughly defined as
all the objects that can be reached by recursively following all references,
starting at some root object).

4.1 Inserting objects with dependencies

Let’s look at the new class CHILD:

class
3 CHILD

create
6 make

feature {NONE} -- Initialization
9

make (first, last: STRING)
-- Create a new child.

12 require
first_exists: not first.is_empty
last_exists: not last.is_empty

15 do
first_name := first
last_name := last

16

18 age := 0
ensure
first_name_set: first_name = first

21 last_name_set: last_name = last
default_age: age = 0

end
24

feature -- Access

27 first_name: STRING
-- The child’s first name.

30 last_name: STRING
-- The child’s last name.

33 age: INTEGER
-- The child’s age.

36 father: detachable CHILD
-- The child’s father.

39 feature -- Element Change

celebrate_birthday
42 -- Increase age by 1.

do
age := age + 1

45 ensure
age_incremented_by_one: age = old age + 1

end
48

set_father (a_father: CHILD)
-- Set a father for the child.

51 do
father := a_father

ensure
54 father_set: father = a_father

end

57 invariant
age_non_negative: age >= 0
first_name_exists: not first_name.is_empty

60 last_name_exists: not last_name.is_empty

17

end

Listing 4.1: The CHILD class.

This adds in some complexity: Instead of having a single object, ABEL
has to insert a CHILD’s mother and father as well, and it has to repeat this
procedure if their parent attribute is also attached. The good news are that
the examples above will work exactly the same.

However, there are some additional caveats to take into consideration.
Let’s consider a simple example with CHILD objects “Baby Doe”, “John
Doe” and “Grandpa Doe”. From the name of the object instances you can
already guess what the object graph looks like:

BabyDoe JohnDoe GrandpaDoe
father father

Now if you insert “Baby Doe”, ABEL will by default follow all refer-
ences and insert every single object along the object graph, which means
that “John Doe” and “Grandpa Doe” will be inserted as well. This is usu-
ally the desired behavior, as objects are stored completely that way, but it
also has some side effects we need to be aware of:

• Assume an insert of “Baby Doe” has happened to an empty database.
If you now query the database for CHILD objects, it will return exactly
the same object graph as above, but the query result will actually
have three items, as the object graph consists of three single CHILD

objects.

• The insert of “John Doe” and “Grandpa Doe”, after inserting “Baby
Doe”, is internally changed to an update operation because both ob-
jects are already in the database. This might result in some undesired
overhead which can be avoided if you know the object structure.

In our main tutorial class START we have the following two features
that show how to deal with object graphs. You will notice it is very similar
to the corresponding routines for the flat PERSON objects.

insert_children
-- Populate the repository with some children objects.

3 local
c1, c2, c3: CHILD
transaction: PS_TRANSACTION

6 do
-- Create the object graph.

18

create c1.make ("Baby", "Doe")
9 create c2.make ("John", "Doe")

create c3.make ("Grandpa", "Doe")
c1.set_father (c2)

12 c2.set_father (c3)

print ("Insert 3 children in the database.%N")
15 transaction := repository.new_transaction

-- It is sufficient to just insert "Baby Joe",
18 -- as the other CHILD objects are (transitively)

-- referenced and thus inserted automatically.
if not transaction.has_error then

21 transaction.insert (c1)
end

24 if not transaction.has_error then
transaction.commit

end
27

if transaction.has_error then
print ("An error occurred during insert!%N")

30 end
end

33 print_children
-- Print all children in the repository

local
36 query: PS_QUERY[CHILD]

do
create query.make

39 repository.execute_query (query)

-- The result will also contain
42 -- all referenced CHILD objects.

across
query as person_cursor

45 loop
print (person_cursor.item)

end
48

query.close

19

end

Listing 4.2: Dealing with object graphs.

4.2 Going deeper in the Object Graph

ABEL has no limits regarding the depth of an object graph, and it will de-
tect and handle reference cycles correctly. You are welcome to test ABEL’s
capability with very complex objects, however please keep in mind that
this may impact performance significantly.

20

Chapter 5

Tuple queries

Consider a scenario in which you just want to have a list of all first names
of CHILD objects in the database. Loading every attribute of each object of
type CHILD might lead to a very bad performance, especially if there is a
big object graph attached to each CHILD object.

To solve this problem ABEL allows queries which return data in TUPLE

objects. Tuple queries are executed by calling execute_tuple_query

(a_tuple_query) in either PS_REPOSITORY or PS_TRANSACTION, where
a_tuple_query is of type PS_TUPLE_QUERY [G]. The result is an iteration
cursor over a list of tuples in which the attributes of an object are stored.

5.1 Tuple queries and projections

The projection feature in a PS_TUPLE_QUERY defines which attributes
shall be included in the result TUPLE. Additionally, the order of the at-
tributes in the projection array is the same as the order of the elements in
the result tuples.

By default, a PS_TUPLE_QUERY object will only return values of at-
tributes which are of a basic type, so no references are followed during
a retrieve. You can change this default by calling set_projection. If you
include an attribute name whose type is not a basic one, ABEL will actu-
ally retrieve and build the attribute object, and not just another tuple.

5.2 Tuple queries and criteria

You are restricted to use predefined criteria in tuple queries, because agent
criteria expect an object and not a tuple. You can still combine them with

21

logical operators, and even include a predefined criterion on an attribute
that is not present in the projection list. These attributes will be loaded
internally to check if the object satisfies the criterion, and then they are
discarded for the actual result.

5.3 Example

explore_tuple_queries
3 -- See what can be done with tuple queries.

local
query: PS_TUPLE_QUERY [CHILD]

6 transaction: PS_TRANSACTION
projection: ARRAYED_LIST [STRING]

do
9 -- Tuple queries are very similar to normal queries.

-- I.e. you can query for CHILD objects by creating
-- a PS_TUPLE_QUERY [CHILD]

12 create query.make

-- It is also possible to add criteria. Agent
criteria

15 -- are not supportedfor tuple queries however.
-- Lets search for CHILD objects with last name Doe.

query.set_criterion (criterion_factory
18 ("last_name", criterion_factory.equals, "Doe"))

-- The big advantage of tuple queries is that you can
21 -- define which attributes should be loaded.

-- Thus you can avoid loading a whole object graph
-- if you’re just interested in e.g. the first name.

24 create projection.make_from_array (<<"first_name">>)
query.set_projection (projection)

27 -- Execute the tuple query.
repository.execute_tuple_query (query)

30 -- The result of the query is a TUPLE containing the
-- requested attribute.

33 print ("Print all first names using a tuple query:%N")

22

across
36 query as cursor

loop
-- It is possible to downcast the TUPLE

39 -- to a tagged tuple with correct type.
check
attached {TUPLE [first_name: STRING]}

42 cursor.item as tuple
then
print (tuple.first_name + "%N")

45 end
end

48 -- Cleanup and error handling.
query.close
if query.has_error then

51 print ("An error occurred!%N")
end

end

Listing 5.1: Using tuple queries.

23

Chapter 6

Error handling

As ABEL is dealing with I/O and databases, a runtime error may happen
at any time. ABEL will inform you of an error by setting the has_error

attribute to True in PS_QUERY or PS_TUPLE_QUERY and, if available, in
PS_TRANSACTION. The attribute should always be checked in the follow-
ing cases:

• Before invoking a library command.

• After a transaction commit.

• After iterating over the result of a read-only query.

ABEL maps database specific error messages to its own representation
for errors, which is a hierarchy of classes rooted at PS_ERROR. In case of an
error, you can find an ABEL error description in the error attribute in all
classes suppoorting the has_error attribute. The following list shows all
error classes that are currently defined with some examples (the PS_ prefix
is omitted for brevity):

• CONNECTION_SETUP_ERROR: No internet link, or a deleted serializa-
tion file.

• AUTHORIZATION_ERROR: Usually a wrong password.

• BACKEND_ERROR: An unrecoverable error in the storage backend, e.g.
a disk failure.

• INTERNAL_ERROR: Any error happening inside ABEL.

• PS_OPERATION_ERROR: For invalid operations, e.g. no access rights
to a table.

24

• TRANSACTION_ABORTED_ERROR: A conflict between two transactions.

• MESSAGE_NOT_UNDERSTOOD_ERROR: Malformed SQL or JSON state-
ments.

• INTEGRITY_CONSTRAINT_VIOLATION_ERROR: The operation violates
an integrity constraint in the database.

• EXTERNAL_ROUTINE_ERROR: An SQL routine or triggered action has
failed.

• VERSION_MISMATCH: The stored version of an object isn’t compatible
any more to the current type.

For your convenience, there is a visitor pattern for all ABEL error types.
You can just implement the appropriate functions and use it for your error
handling code.

class
3 MY_PRIVATE_VISITOR

inherit
6 PS_DEFAULT_ERROR_VISITOR

redefine
visit_transaction_aborted_error,

9 visit_connection_setup_error
end

12 feature -- Visitor features

visit_transaction_aborted_error (
transaction_aborted_error:
PS_TRANSACTION_ABORTED_ERROR)

15 -- Visit a transaction aborted error
do
print ("Transaction aborted")

18 end

visit_connection_setup_error (connection_setup_error:
PS_CONNECTION_SETUP_ERROR)

21 -- Visit a connection setup error
do
print ("Wrong login")

25

24 end

end

Listing 6.1: Sample error handling using a visitor.

26

	Introducing ABEL
	Setting things up
	Getting started

	Basic operations
	Inserting
	Querying
	Updating
	Deleting
	Dealing with Known Objects

	Advanced Queries
	The query mechanism
	Criteria
	Predefined Criteria
	Agent Criteria
	Creating criteria objects
	Combining criteria

	Dealing with references
	Inserting objects with dependencies
	Going deeper in the Object Graph

	Tuple queries
	Tuple queries and projections
	Tuple queries and criteria
	Example

	Error handling

