[image: wwwlogo.png]

Eiffel Logging Cluster
Architecture, Design and Implementation

Introduction	3
Architecture	4
Architecture goals	4
Cluster goals	4
Design	5
Cluster Structure	5
Cluster Overview	5
Main Cluster Classes	5
LOG_LOGGING_FACILITY	5
LOG_WRITER	6
Writer directory classes	7
LOG_WRITER_STDERR	7
LOG_WRITER_FILE	7
LOG_WRITER_SYSTEM	7
Roll your own	8
Implementation	9
LOG_LOGGING_FACILITY	9
Initialization	9
Output	9
Access	11
LOG_WRITER	16
Initialization	16
Output	16
LOG_WRITER_FILE	17
Initialization	17
Output	17
Access	17
LOG_WRITER_STDERR	18
Initialization	18
Output	18
LOG_WRITER_SYSTEM	19
Inheritance	19
Initialization	19
Disposal	20
Output	20
Access	20

	Copyright © 2010 by ITPassion Ltd, Eiffel Software and others	
[bookmark: _Toc259994564]Introduction
For certain projects, it would be nice to be able to write messages to a log file. The problem with abstraction of such functionality is that various platforms have their own method of gathering these messages. Some platforms use log files, some platforms use a so-called syslog daemon, some platforms use a so-called Event Log.
The Eiffel Logging Cluster aims to resolve these differences by providing one interface to access them, while making sure the right platform methods are used under the hood.
One of the main goals of the Eiffel Logging Cluster is to enable users to utilize the same code on multiple platforms, while using various logging mechanisms.
Another main goal is to provide an extendible logging interface that can be extended to log messages to a database, or whatever means seems fit to the developer of the application universe.
	Eiffel Logging Cluster

	Copyright © 2010 by ITPassion Ltd, Eiffel Software and others	8	
[bookmark: _Toc259994565]Architecture
[bookmark: _Toc259994566]Architecture goals
The target language for the Cluster implementation is Eiffel, with the platform dependent functions written in ANSI C.
The Cluster must be usable on all platforms on which Eiffel is supported as a programming language.
[bookmark: _Toc259994567]Cluster goals
1) The same Eiffel code should compile and run on many platforms;
2) The Logging Cluster must offer a wide range of output forms such as syslog, Event Log, Database, File, stderr. This needs to be extendible by other developers;
3) All classes in the system must be capable of utilizing the log functionalities by inheriting from or using a single class that provides the required functionality. Also, within the system, the log functionality should only require configuring once;
4) Writing a message to the log must be as simple as the following code snippet, independent from the actual type of log file used.
log.write_fatal_error (“A fatal error occurred. Bailing out%N”)
The logging library has been designed with multi threading in mind. As much concurrency as possible has been allowed by the design, however, in the LOG_WRITERs there might be some cases where two threads actually write to the logs at the same time. To make sure that the two threads are not writing through each other’s messages, the actually putstring call is atomic, in that there is only one putstring per write operation. Normally operating systems should be capable of making sure that the file is not being written two at the same time by two threads. The same holds for the system logging log writer that uses syslog (on Unix) and Event Log (on Windows). These system services should be capable of guarding the actual log files from concurrent writes.
When developing a self-made LOG_WRITER it has to be kept in mind that concurrency can occur, and so, if necessary, the developer will have to make sure that this is allowed by the underlying mechanism. If it is not allowed, one can only use MUTEX objects to avoid deadlocks.
The reason why MUTEX objects are preferably not used in the current, default, implementation is that the logging library should also be capable of working in a process that doesn’t use multiple threads. Requiring MUTEX objects in such a case, would automatically transform any project into a multi-threaded project.
[bookmark: _Toc259994568]Design
[bookmark: _Toc259994569]Cluster Structure
The cluster is provided with one top-level directory in which LOG_LOGGING_FACILITY and LOG_WRITER are placed. Further to this there is a subdirectory “writers” in which all specific log writers are kept.
[bookmark: _Toc259994570]Cluster Overview


Figure 1: Classes in the Logging Cluster
[bookmark: _Toc259994571]Main Cluster Classes
[bookmark: _Toc259994572]LOG_LOGGING_FACILITY
The LOG_LOGGING_FACILITY class provides access to the log functionality by exposing a number of write_* features. Besides these features, a number of configuration features are exposed. 
Writing messages
The following features for writing messages are provided:
write_emergency (msg: STRING)
write_alert (msg: STRING)
write_critical (msg: STRING)
write_error (msg: STRING)
write_warning (msg: STRING)
write_notice (msg: STRING)
write_information (msg: STRING)
write_debug (msg: STRING)
Configuration of the logging functionality
At least one log writer must be registered with the LOG_LOGGING_FACILITY. This can be done by using one of several enable_* features, or by calling register_log (a_log: LOG_WRITER).
The following functions are provided:
disable_all_logs
enable_default_file_log
enable_default_stderr_log
enable_default_system_log
register_log_writer (a_log: LOG_WRITER)
resume_all_logs
resume_default_file_log
resume_default_stderr_log
resume_default_system_log
resume_i_th_log (an_index: INTEGER)
resume_log_writer (a_log_writer: LOG_WRITER)
suspend_all_logs
suspend_default_file_log
suspend_default_stderr_log
suspend_default_system_log
suspend_i_th_log (an_index: INTEGER)
suspend_log_writer (a_log_writer: LOG_WRITER)
By default, no log writers are registered.
The disable_all_logs feature can be used to completely unregister all logs after a certain event occurred. This can be useful in a situation where a child process is spawned that subsequently should lose connection to the console. It can disable_all_logs, and then enable_default_system_log in order to close the standard file descriptors 0, 1 and 2.
The suspend_* and resume_* features can be used to selectively suspend and resume certain or all log writers that are registered in LOG_LOGGING_FACILITY.
All LOG_WRITERs are kept in a list, and when that list is not empty, the write_* features call the write feature on each of the LOG_WRITERs in the list. If the list is empty, the write_* features will not call anything.
Design by Contract
All the write_* features require the following:
· There is at least one log writer registered and
· The msg attribute is not Void and not empty
The write_* features ensure that the number of log writers has not changed.
The features enable_system_log, enable_file_log, and enable_stderr_log ensure that one more log writer is registered. The disable_all_logs feature ensures that no log writer is registered. Lastly, the register_log feature requires that the provided log is not Void, and ensures that one more log writer is registered with the system.
[bookmark: _Toc259994573]LOG_WRITER
The LOG_WRITER class is an abstract class, which provides the interface used by the LOG_LOGGING_FACILITY. All the features are exported to {LOG_LOGGING_FACILITY} so that none of the features can be called accidently by a (user) class in the universe.
The following interface is exposed:
initialize
has_errors: BOOLEAN
is_intialized: BOOLEAN
write (priority: INTEGER; msg: STRING)
suspend
resume
suspended: BOOLEAN
The initialize feature initializes the minimum for the log writer to work. For example, the LOG_WRITER_FILE will simply open a text file for appending text.
Design by Contract
The write feature requires that the log writer is initialized, and that the message is not Void and not empty. The initialize feature requires that the log writer is not yet initialized and ensures that it is initialized. The other two features do not have a contract in the abstract LOG_WRITER class.
[bookmark: _Toc259994574]Writer directory classes
The following classes are implemented for the user’s usage:
· LOG_WRITER_FILE
· LOG_WRITER_STDERR
· LOG_WRITER_SYSTEM
[bookmark: _Toc259994575]LOG_WRITER_STDERR
This class simply writes everything onto io.error by calling io.error.putstring (msg).
[bookmark: _Toc259994576]LOG_WRITER_FILE
This class creates a default log file called Execution_environment.current_working_directory + Operating_environment.directory_separator + “system.log”. If this name is not suitable for an application one can create a new object of type LOG_WRITER_FILE and call set_file_name to provide a more suitable file name.
[bookmark: _Toc259994577]LOG_WRITER_SYSTEM
This class uses the system default event or message logging subsystem to provide integrated message gathering from an application point of view.
On the Windows platform, it uses the Event Log, and on Unix platforms, it uses the syslogd or rsyslogd.
There are obvious differences between Unix and Windows. These differences are obscured from the class’ user in a C library. Nevertheless, one can, by inheriting from the LOG_WRITER_SYSTEM set certain default aspects, like the application name and the facility to use, e.g. LOG_LOCAL3 or System Event Log, instead of the default facilities.
The default facilities are LOG_LOCAL6 on Unix platforms and the Application Event Log on Windows.
The default syslog options on Unix are simply LOG_NDELAY, and LOG_PID. Again, by inheritance, these defaults can be changed to suit the needs of the application under development.
Windows Specifics
eif_eventlog_messages.h and eif_eventlog_messages.dll
These two files are generated when finish_freezing -library is executed in the $ISE_EIFFEL\library\logging\Clib. You need to ship these files with the installation software so that these files can be copied into a known directory, and so that one can already setup appropriate Registry entries.
eif_eventlog_messages.reg
This file contains an example of what to include in the Registry for your own application. The hexadecimal stuff actually reads the full absolute file name of the eif_message.dll file.
When an application is using the Event Log for system logging, the Event Viewer expects to find the message definitions in certain places in the Registry. The keywords are Application, Security, and System. So when an application uses the Application Event Log, a key must be generated under HKLM\System\CurrentControlSet\Services\eventlog\Application.
The name of that key is the Event Source that the application will use. This is the same value as {LOG_WRITER_SYSTEM}.application_name, and is set in {LOG_WRITER_SYSTEM}.set_application_name. You can override the default (“EiffelSysLog”) by creating a new object of type LOG_WRITER_SYSTEM and calling set_application_name. See the multiplatform example, for an example of such usage.
Failure to update the Windows Registry, basically generates a post condition violation of is_initialized in the LOG_WRITER_SYSTEM’s initialize feature, so it is critically important to the well-functioning of an application to adhere by the above guidelines.
[bookmark: _Toc259994578]Roll your own
It’s fairly to create specific LOG_WRITERs. One has to define the initialize feature, create a sensible default and put it in default_create. The dispose feature could be used to close all external resources, e.g. file handles. The only feature left to implement is the write feature that actually writes messages to output channel that is being defined in the new LOG_WRITER.
[bookmark: _Toc259994579]Implementation
[bookmark: _Toc259994580]LOG_LOGGING_FACILITY
[bookmark: _Toc259994581]Initialization
LOG_LOGGING_FACILITY_make
Requirements
Not applicable
Body
Create the list of log writers.
Guarantees
The list of log writers is created.
[bookmark: _Toc259994582]Output
write_emergency (msg: STRING)
Requirements
The list of log writers must have at least 1 log writer
Body
For each log writer from the list, call the feature write with the following prefix to the `msg’ string: “EMERG - “.
Guarantees
The list of log writers still has the same number of log writers as when execution began
write_alert (msg: STRING)
Requirements
The list of log writers must have at least 1 log writer
Body
For each log writer from the list, call the feature write with the following prefix to the `msg’ string: “ALERT - “.
Guarantees
The list of log writers still has the same number of log writers as when execution began
write_critical (msg: STRING)
Requirements
The list of log writers must have at least 1 log writer
Body
For each log writer from the list, call the feature write with the following prefix to the `msg’ string: “CRIT  - “.
Guarantees
The list of log writers still has the same number of log writers as when execution began
write_error (msg: STRING)
Requirements
The list of log writers must have at least 1 log writer
Body
For each log writer from the list, call the feature write with the following prefix to the `msg’ string: “ERROR - “.
Guarantees
The list of log writers still has the same number of log writers as when execution began
write_notice (msg: STRING)
Requirements
The list of log writers must have at least 1 log writer
Body
For each log writer from the list, call the feature write with the following prefix to the `msg’ string: “NOTIC - “.
Guarantees
The list of log writers still has the same number of log writers as when execution began
write_warning (msg: STRING)
Requirements
The list of log writers must have at least 1 log writer
Body
For each log writer from the list, call the feature write with the following prefix to the `msg’ string: “WARN  - “.
Guarantees
The list of log writers still has the same number of log writers as when execution began
write_information (msg: STRING)
Requirements
The list of log writers must have at least 1 log writer
Body
For each log writer from the list, call the feature write with the following prefix to the `msg’ string: “INFO  - “.
Guarantees
The list of log writers still has the same number of log writers as when execution began
write_debug (msg: STRING)
Requirements
The list of log writers must have at least 1 log writer
Body
For each log writer from the list, call the feature write with the following prefix to the `msg’ string: “DEBUG - “.
Guarantees
The list of log writers still has the same number of log writers as when execution began
[bookmark: _Toc259994583]Access
disable_all_logs
Requirements
At least one log writer must have been registered
Body
Empty the log writers list.
Guarantees
No log writer is registered
enable_default_file_log
Requirements
Not applicable
Body
Create a default, but initialized, file log writer and add it to the list of log writers
Guarantees
There is one more log writer registered compared to when execution began
enable_default_stderr_log
Requirements
Not applicable
Body
Create a default, but initialized, stderr log writer and add it to the list of log writers
Guarantees
There is one more log writer registered compared to when execution began
enable_default_system_log
Requirements
Not applicable
Body
Create a default, but initialized, system log writer and add it to the list of log writers
Guarantees
There is one more log writer registered compared to when execution began
register_log (a_log: LOG_WRITER)
Requirements
The argument `a_log’ may not be Void and `a_log’ may not be initialized
Body
Add the the argument `a_log’ to the list of log writers and initialize it.
Guarantees
There is one more log writer registered compared to when execution began and `a_log’ is now initialized.
resume_all_logs
Requirements
Some log writers must have been registered.
Body
Call resume on all items in the log_writers_list.
Guarantees
Some log writers are still registered.
resume_default_file_log
Requirements
Default file logging must be enabled and the default_log_writer_file object must exist and be initialized.
Body
Call resume on the default_log_writer_file object.
Guarantees
Not applicable.
resume_default_stderr_log
Requirements
Default stderr logging must be enabled and the default_log_writer_stderr object must exist and be initialized.
Body
Call resume on the default_log_writer_stderr object.
Guarantees
Not applicable.
resume_default_system_log
Requirements
Default system logging must be enabled and the default_log_writer_system object must exist and be initialized.
Body
Call resume on the default_log_writer_system object.
Guarantees
Not applicable.

resume_i_th_log_writer (an_index: INTEGER)
Requirements
The argument `an_index’ must be greather than zero are less than or equal to the number of registered log writers.
Body
Move the cursor of log_writers_list to the position an_index, and call resume on that item.
Guarantees
Not applicable.
resume_log_writer (a_log: LOG_WRITER)
Requirements
The argument `a_log’ must not be Void and it must initialized.
Body
Call resume on `a_log’.
Guarantees
Not applicable.
suspend_all_logs
Requirements
Some log writers must have been registered.
Body
Call suspend on all items in the log_writers_list.
Guarantees
Some log writers are still registered.
suspend_default_file_log
Requirements
Default file logging must be enabled and the default_log_writer_file object must exist and be initialized.
Body
Call suspend on the default_log_writer_file object.
Guarantees
Not applicable.
suspend_default_stderr_log
Requirements
Default stderr logging must be enabled and the default_log_writer_stderr object must exist and be initialized.
Body
Call suspend on the default_log_writer_stderr object.
Guarantees
Not applicable
suspend_default_system_log
Requirements
Default system logging must be enabled and the default_log_writer_system object must exist and be initialized.
Body
Call suspend on the default_log_writer_system object.
Guarantees
Not applicable.
suspend_i_th_log_writer (an_index: INTEGER)
Requirements
The given index `an_index’ must be greater than zero and less than or equal to the number of registered log writers.
Body
Move the cursor of log_writers_list to the position an_index, and call suspend on that item.
Guarantees
Not applicable.
suspend_log_writer (a_log: LOG_WRITER)
Requirements
The given log writer `a_log’ must exist and it must be initialized
Body
Call suspend on the given log writer.
Guarantees
Not applicable.
[bookmark: _Toc259994584]LOG_WRITER
[bookmark: _Toc259994585]Initialization
default_create
Requirements
Not applicable
Body
This feature does not do anything
Guarantees
Not applicable
initialize
Requirements
Not applicable
Body
The body of this feature is deferred
Guarantees
That the log writer is initialized
[bookmark: _Toc259994586]Output
write (msg: STRING)
Requirements
The log writer must be initialized, it must not be suspended, and `msg’ may not be Void or empty
Body
The body of this feature is deferred.
Guarantees
The log writer is still initialized.
[bookmark: _Toc259994587]LOG_WRITER_FILE
[bookmark: _Toc259994588]Initialization
default_create
Requirements
Not applicable
Body
This feature sets the appropriate file name to use by default.
Guarantees
Not applicable
initialize
Requirements
Not applicable
Body
Create the log_file for appending to that file_name. Rescue any raised exceptions, retry the body after setting a local flag, and indicate that an error occurred through has_errors.
Guarantees
The log writer is initialized. It also guarantees that the log_file can be written to.
[bookmark: _Toc259994589]Output
write (msg: STRING)
Requirements
The log writer must be initialized, it must not be suspended, and `msg’ may not be Void or empty
Body
The `msg’ is written to the log_file, with a prefix of the current date and time and a hyphen character.
Guarantees
The log writer is still initialized.
[bookmark: _Toc259994590]Access
set_file_name (a_file_name: FILE_NAME)
Requirements
The given a_file_name must not be Void and the object must not be empty. Also, the log writer may not be initialized yet.
Body
The used file name is set to a twin of the given `a_file_name’.
Guarantees
Not applicable.
[bookmark: _Toc259994591]LOG_WRITER_STDERR
[bookmark: _Toc259994592]Initialization
default_create
Requirements
Not applicable
Body
This feature does not do anything
Guarantees
Not applicable
initialize
Requirements
Not applicable
Body
This feature does not do anything, except to set the flag indicating that this log writer is initialized.
Guarantees
The log writer is initialized.
[bookmark: _Toc259994593]Output
write (msg: STRING)
Requirements
The log writer must be initialized, it must not be suspended, and `msg’ may not be Void or empty
Body
The `msg’ is written to the io.error, with a prefix of the current date and time and a hyphen character.
Guarantees
The log writer is still initialized.
[bookmark: _Toc259994594]LOG_WRITER_SYSTEM
[bookmark: _Toc259994595]Inheritance
In order to provide for some fundamental constant values, the following classes will be introduced as parents of LOG_WRITER_SYSTEM:
· LOG_FACILITY_CONST
This class implements the constants for all Unix syslog facilities and the various Windows Event Log constants that let a developer choose which Event Log the message should go into.
· LOG_OPTIONS_CONST
This class implements the Unix syslog options, and basically returns a non-descript value on other platforms.
· LOG_PRIORITY_CONST
This class implements the Unix syslog options that are mapped to Windows Event Log Categories in the underlying C implementation of the macro’s.
[bookmark: _Toc259994596]Initialization
default_create
Requirements
Not applicable
Body
This feature sets appropriate options, facility and application name to use by default.
Guarantees
Not applicable
initialize
Requirements
Not applicable
Body
Call eif_logging_open_log with the default or set information to open the system log.
Indicate through is_initialized that this LOG_WRITER_SYSTEM object is ready to write to the system log, and indicate through has_errors that an error occurred during initialization.
Guarantees
The log writer is initialized or there were errors.
[bookmark: _Toc259994597]Disposal
dispose
Requirements
Not applicable
Body
Close the system logger.
Guarantees
Not applicable
[bookmark: _Toc259994598]Output
write (msg: STRING)
Requirements
The log writer must be initialized, and `msg’ may not be Void or empty
Body
Remove the prefix of `msg’, convert that to the appropriate logging priority or category, and write the remainder `msg’ is written to the log.
Guarantees
The log writer is still initialized.
[bookmark: _Toc259994599]Access
set_application_name (an_application_name: STRING)
Requirements
The given `an_application_name’ may not be Void or empty, and the log writer may not be initialized.
Body
Set the used application name to a twin of the given `an_application_name’.
Guarantees
Not applicable.
set_facility (a_facility: INTEGER)
Requirements
The log writer may not be initialized.
Body
Set the used facility to the given `a_facility’.
Guarantees
Not applicable.
set_options (some_options: INTEGER)
Requirements
The log writer may not be initialized.
Body
Set the used options to the given `some_options’.
Guarantees
Not applicable.

image2.emf
LOG_LOGGING_FACILITY

YOUR_CLASSES

LOG_WRITER*

SYS_LOG_WRITERFILE_LOG_WRITERSTDERR_LOG_WRITER


oleObject1.bin
�

LOG_LOGGING_FACILITY


YOUR_CLASSES


LOG_WRITER*


SYS_LOG_WRITER


FILE_LOG_WRITER


STDERR_LOG_WRITER



image1.png

